コンテンツ情報
公開日 |
2020/04/17 |
フォーマット |
URL |
種類 |
製品資料 |
ページ数・視聴時間 |
1分20秒 |
ファイルサイズ |
-
|
要約
製品の品質確保に欠かせない検査工程である「外観検査」。目視によって部品や製品を検査して良品・不良品を判定し、不良原因を追究して製造工程にフィードバックして作業工程の見直しが可能になる。しかし、目視検査では人的な差異が発生することもあり、人材不足や生産性などの観点も含めて、同工程を自動化する動きが近年見られている。
そこで注目を集めているのが、AI(人工知能)を活用する外観検査だ。生産ラインに流れる製品の画像や動画などのデータから、AIが良品か不良品を瞬時に判断する。不良品が発生した場合は作業員に警告してラインをストップすることで、効率的な外観検査を実施できる。
ただ、多くのAI画像認識技術では、不定形物の判定が困難だったり、大量の教師データが求められたりすることもある。そうした中、人間が目で見て脳で判断する感覚に近しい教師データ不要の新たな独自開発の画像認識アルゴリズムを活用したソリューションが注目を集めている。以下の動画では、実際の活用例を踏まえながら、その詳細を解説している。外観検査の効率化を図りたい企業は、ぜひ参考にしてほしい。