業界特化型 技術・製品情報サイト
  • MONOist
  • EE Times Japan
  • EDN Japan
  • スマートジャパン
  • BUILT

DataRobot Japan株式会社

事例

DataRobot Japan株式会社

専門家不在で開始したAI導入、ジーエス・ユアサは販売予測をどう高精度化したか

コンテンツ情報
公開日 2022/07/15 フォーマット PDF 種類

事例

ページ数・視聴時間 5ページ ファイルサイズ 360KB
要約
 自動車用バッテリー交換で発生するアフターマーケットの販売予測は容易ではない。寿命以外にも交換を求められるシーンが多く、急を要するケースが少なくないからだ。ジーエス・ユアサ コーポレーションでは中間流通に対して受注後1日というリードタイムを維持し、かつ在庫を抱えないためにかねて販売予測精度の向上に努めてきたが、人手では精度向上に限界がある。そこで、模索したのがAIの活用だ。

 ただ、当時の同社はデータ分析の専門部署が存在せず、スキルを持つ人材もいなかった。この問題を解決したのが、エンタープライズ向けのAIプラットフォームだ。スキルがなくとも利用可能で、モデル作成において特徴量の効果が明確であり、ガバナンスを効かせやすい。またモデルの保守や改修においても当事者が自分で対応できるため、業務スピードを落とさずに運用できる点も魅力だった。

 導入もスピーディーで、1カ月のPoC、6カ月のパイロット期間で現場での本番運用に至っている。本資料では同社におけるAIを活用した販売予測について解説するとともに、その成功要因となったAIプラットフォームを詳しく紹介する。